
Joint Deep Demosaicing and Denoising For Interleaved X-Ray Channels

Jan Emrich
mail@janemrich.de

Frederik Wegner
wegnerfrederik@gmail.com

Faraz Saeedan
saeedan.faraz@visinf.informatik.tu-darmstadt.de

Abstract

Using deep neural networks for denoising and demosaic-
ing of raw RGB and conventional X-Ray images has al-
ready given good results. This lab report documents how
to transfer deep learning for demosaicing of RGB images
and Noise2Self denoising to X-Ray images with interleaved
channels. We note challenges of N2S training and suggest
improvements. Further, we investigate how training demo-
saicing and denoising jointly can improve model perfor-
mance as well as model runtime during inference.

1. Introduction
X-Ray Baggage Detectors need to trade off resolution,

noise and speed. To improve resolution and noise level
while maintaining speed, Smith developed a new detector.
It still has the resolution limitation in raw data output, but
enables the opportunity to improve resolution through de-
mosaicing.

As the machine still needs to trade off noise with speed,
raw output is very noisy. Noise can not be easily reduced
through clean target training, because it is very hard or
even impossible to obtain such data due to the way the ma-
chine works. Fortunately, there were new methods for self-
supervised denoising introduced recently.

X-Rays

Sensor
arrays

Figure 1: Two sen-
sor lines capture a top
and side view simultane-
ously.

Therefore we learn deep
neural networks for the
demosaicing and denoising
tasks. Furthermore we
join these tasks in a single
model to improve model
performance and runtime
during inference.

Smith Detectors Smith
produces multi-channel
X-Ray detectors of different
sizes and layout. These

detectors are specifically designed and used for scanning
baggage for unwanted and potentially harmful contents,
such as weapons and explosives. The sensors are arranged
in a line forming a sensor array. A detector (fig. 1) has
two sensor arrays that capture a top and a side view.
On a conveyor belt, the object that is scanned is moved
across the sensor arrays while X-Rays are cast from the
opposite site of the conveyor through the object onto the
sensors. Each measurement is a row in the output picture.
Varying belt speed and casting frequency directly affects the
resolution or pixel size of the image along the height-/y-
/column-axis as well as the noise in the image.

0.8mm

1.2mm

Figure 2: Top: PRO
sensor arrays, bottom:
SHARP sensor arrays.
Pixels of the SHARP
sensor are wider and
the high channel is
shifted to the right by
half a pixel.

Sensor array layout A sen-
sor array has two types of sen-
sors, a high and a low fre-
quency sensor, which com-
bine into a two channel image.
These sensors can be placed be-
hind each other because they
measure different rays and only
interfere with the rays they cap-
ture (fig. 2). When combined
the measurements of two chan-
nels at one location can be used
to infer the material the rays
had passed through. This infor-
mation is then visualized with a
color code as an RGB image as
shown in fig. 3. The coloriza-
tion algorithm was developed
by Smith and is closed source
but we were granted access to a binary executable.

Detector types Smith fabricates sensors of different sizes.
Smaller sensors result in higher resolution images along the
x-/column-/width-direction of the image while larger sen-
sors reduce the noise in the image. We work with images
from 0.8mm and 1.2mm sized sensors. Two build configu-

1

Figure 3: Left and middle: high channel image of the same
object. Right: A color coding calculated from both high and
low images. We only see the high image the low channel
image is not displayed. An enlarged patch of the colorized
image makes the effect of noise visible.

rations by Smith called PRO and SHARP are relevant (see
fig. 2) to us. Due to the shifted sensor arrays, the SHARP
detector output can be regarded as a mosaiced image. De-
spite having less sensors than the PRO detector, the SHARP
detector can produce higher quality images because it takes
less noisy measurements and the shift in the sensor array
can be exploited through demosaicing. Less noisy measure-
ments are preferable because they allow a higher scanning
frequency and therefore faster belt speed.

2. Related Work

2.1. Demosaicing

Deep CNN have already been successfully trained to de-
mosaic RGB images [5, 4]. This is approached by using a
dataset of demosaiced ground-truth images and artificially
mosaicing them by applying a bayer pattern filter. The net-
work is then trained to recunstruct the original image from
the artificially mosaiced one. The related works we present
generally differ in whether they learn a residual on the in-
put or not. Also different model architectures are used.
Residual learning a model m to predict y from x means
calculating the loss l as l = lossfunction(m(x) + x, y) A
residual network (short ResNet) is not a residually trained
network(fig. 18). But residual learning is not required as
a ResNet can jointly demosaicing and super-resolut RGB
images [8]. The input is convoluted into a 256 dimen-
sional feature tensor that is then passed through 24 residual
blocks. The last convolution upsamples 256 channels to a 3
channel RGB output of higher resolution. Another architec-
ture called ResNet Bottleneck achieves better peak signal to
noise ratios on sRGB datasets [6]. The Bottleneck ResNet
also upsamples the input to 256 channels and then passes it
through 10 residual blocks to finally downsample it to a 3
channel RGB output (fig. 18). We reimplement the Bottle-
neck ResNet and use it as a baseline to compare agains.

2.2. Denoising

In this section we briefly discuss learning-based methods
for image denoising.

Clean Target With available clean target data, UNet
architectures can be trained to very accurately denoise
images[7].

Self-supervised Recently, a new learning-based approach
to denoising called Noise2Noise was introduced by Lehti-
nen et al. [3]. They found that predicting one noisy signal
x̂1 = x + n1 from another statistically independent noisy
signal x̂2 = x+n2 (with the same underlying signal x) will
result in the true signal x. This works with all noise that has
a zero-mean when using a L2 loss, or similarly with zero
median when using L1 loss. Assuming zero-mean noise
and that we want to optimize the prediction using a CNN
with parameter mappings fθ and loss L we have

argmax
θ

∑
L(fθ(x̂1), x̂1). (1)

With L = L2(x, y) = (x − y)2, the minimum will be the
expectation of the signal:

x = E{x̂}. (2)

As the expectation of the noise is zero, the minimum will be
the true signal. Therefore Noise2Noise can be used to train
denoising from noisy image pairs.

Single self-supervised Based on the idea of Noise2Noise,
two groups found another approach to denoise images
only requiring single noisy image samples. They called
it Noise2Void [2] and Noise2Self [1]. This approach re-
quires to assume that the signal is pixel-wise dependent and
the noise is pixel-wise independent. With this assumption,
training as in Noise2Noise with single noisy images and a
slight modification can be used to denoise: Use the same
noisy image for the input and the output, but mask pixel in
the input and predict their value. Then only use the loss
from these predicted pixel to train. As the noise is pixel-
wise independent, only its a priori expectation can be pre-
dicted, while the signal can be estimated from its surround-
ing pixel.

3. Methodology
3.1. Datasets

We have datasets of both the PRO and the SHARP de-
tector. The same set of objects was passed through both
detectors. Because a detector has two sensor lines (fig. 1)
we get two images from the PRO and two images from the
SHARP detector for each object. Figure 3 shows images

2

from the PRO detector. There are 99 objects each imaged
from the top and the side, yielding 198 images. We split off
10 percent of the data for final evaluation. During training
we use 10 percent of the training data for validation. This
means our models are trained on 81 percent of the data.

As the images have different sizes, we extract equally
sized patches (128 x 128) at random locations from each im-
age to be able to form batches during training. The number
of patches per image is usually set to 6 or 8. Sensor mea-
surements range from 0 to 65535 and have the maximum
value if the rays were unobstructed. We transformed the
values into [0,1] range and invert them such that the back-
ground is zero and object have a value. To make learning
more efficient the images are cropped to remove unneeded
background before extracting the patches.

Figure 4: Top:
PRO data, Bot-
tom: simulated
SHARP data

Simulated SHARP from PRO
Our goal is to enhance the mo-
saiced images taken with the
shifted 1.2mm sensor of the
SHARP machine. As there is
no demosaiced ground-truth we
cannot use the SHARP images
for training, but we have higher
resolution demosaiced images
from the 0.8mm sensor of the PRO
machine. These are used to simulate mosaiced images
of an imaginary 1.6mm SHARP sensor for which the
corresponding PRO images serve as a ground truth. This
is done by averaging adjacent 0.8mm pixels of the PRO
images. (See fig. 4).

SHARP raw The images from the SHARP sensor that we
want to improve. We apply our demosaicing model to these
images during evaluation. We also train to denoise these
images using the noise to self approach.

SHARP processed Smith developed an algorithm that
demosaics and super-resolutes SHARP images. The pro-
cessed SHARP images have 4 times more pixel along the
direction of the sensor array then the raw SHARP images.
These processing results are used as a baseline to compare
our results against.

3.2. Demosaicing

Training setup We train our demosaicing networks with
mean squared error on the reconstruction of PRO images
from the mosaiced simulated SHARP images. Applying
the trained network to the original SHARP data then yields
images from an imaginary 0.6mm not shifted sensor array.
Figure 17 shows an overview of our experiment pipeline.
During training for demosaicing we generally use, if not

Name Description
Bottleneck ResNet from [6]
ResNet modified Bottleneck ResNet
N2S UNet from [1]
UNet our implementation

Table 1: Basic architectures in use. When refering to the
UNet we usually specify the upsampling method, bilinear
or transpose convolution also called upconvolution.

stated otherwise, a batch size of 12 and an initial learning
rate of 0.001 for 30 epochs. If the validation loss does not
increase for 5 consecutive epochs, the learning rate is re-
duced by a factor of 0.25.

Our model architectures that are listed in table 1.
Schematics of these are displayed in fig. 18. Our reim-
plementation of the Bottleneck ResNet differs as we use
LeakyReLU instead of ReLU and add batch normalization
layers. We use the Bottleneck ResNet as an evaluation base-
line. We experiment with different ResNet architectures and
settled on the one that works best. We simply call this model
ResNet (table 1).

During training and fine tuning our UNet we either ob-
served checkerboard artefacts when using transpose convo-
lutions or over-smoothing with bilinear upsampling. These
artefacts are removed by added convolutions after the up-
sampling and before concatenating the skip layer (fig. 23).
We use 3 convolution blocks (fig. 18) after upsampling. Our
UNet uses max pooling instead of convolutions for down-
sampling as we could not observe a difference in the output
regarding this choice.

3.3. Denoising

As we neither have clean images nor pairs of noisy
images, we cannot use clean target approaches or a self-
supervised approach like Noise2Noise. Instead, we have to
use a single self-supervised approach. We choose to adapt
N2S. In the following sections we describe our basic N2S
method and how we adapted it to denoising of a single chan-
nel and both SHARP channels.

Our basic adapted Noise2Self method Noise2Self di-
vides the noisy image x into a grid of a specific grid size
m. We draw an index i uniformly random from range
[0,m2−1]. The ith pixel of every cell in the grid comprises
a mask. According to this mask, pixels in the noisy image
are replaced by their surrounding using a convolution. This
masked image x̂ is fed into a neural net. The NN is trained
on the unaltered noisy images as targets. The loss L for
optimization is obtained by computing the Mean Squared
Error between the noisy image and its masked version, but
only where the masking applies.

L = MSE(xmask, x̂mask) (3)

3

Architecture for denoising The denoising architecture is
the N2S Unet (fig. 18). The N2S UNet can be configured
to use bilinear interpolation or transpose convolutions for
upsampling. The convolutions for downsampling and up-
sampling are grouped with the group size set to the chan-
nel dimension. Residual connections can be enabled, such
that the model is fully residual and the convolutional blocks
have residuals.

Figure 5:
Masking
Convolution

Single Channel Denoising Our Single
Channel Denoising method is mostly un-
changed from the N2S paper. In every
grid cell one pixel is masked. It is re-
placed by the same convolution used in
N2S shown in figure 5. Our grid size for
this masking is 5 by 5.

SHARP Denoising This method is for denoising of com-
plete images from the SHARP machine. As mentioned
above SHARP images have interleaved channels. We adapt
the loss function and masking to account for this. For mask-
ing we define three approaches.

1 Pixel Masking One channel is uniformly randomly se-
lected for optimization. In this channel, one pixel is
masked according to the Single Channel Denoising
method. Only this pixel is predicted and accounted
for in the loss function. This masking assumes that the
channels are noise-independent.

2 Pixel Masking One pixel in the high channel is masked
as in the Single Channel method. Two pixels in the
other channel overlap with this pixel. Using a uni-
form random drawing, one of them is masked. This
means the information of the overlap between these
two pixels in different layers is lost after masking. In
this masking approach, the whole mask is used to com-
pute the loss function. This masking assumes that it is
enough to have a overlap of pixels to train N2S.

3 Pixel Masking Uniformly randomly select one channel
to optimize. In this channel, one pixel is masked.
Two pixels in the other channel overlap with this pixel.
These are masked. As the original N2S masking ker-
nel (figure 5) has a blind spot of only 1 pixel, we apply
the 5x5 kernel shown in figure 12. In this approach
only the mask from the channel we selected is used
for masking in the loss function. This approach makes
no assumptions about the noise independence between
channels.

In all approaches both channels are optimized in all
batches and the masking grid size used is 6 by 6.

Figure 6: Masking
Convolution for
big blind spot

For SHARP denoising 3 pixel
masking is used, as it has the best
results because of channel depen-
dence. (See figure 21 in the ap-
pendix for a comparison.)

Bilinear upsampling We found
that bilinear upsampling performes
slightly better. Therefore we use it
in our denoising architectures. See
apendix figure 19(b/c) for a visual
comparison.

Residual No residuals are used in our architectures for
denoising, as we found that N2S training has the identity
function as a local minima. Figure 7 shows a training loss
trajectory of a fully residual UNet and Figure 8 the resulting
residual in testing.

Figure 7: Local Minima Identity Function: Training Loss
of residual net(grey) vs. non-residual(pink)

Figure 8: Fully residual N2S training learns identity

Noise Completion N2S learns the mean of the noise dis-
tribution. When the noise distribution is cut off, the mean
in the data is shifted from the underlying mean we want to
learn. This is the case for the cut-off of the distribution at
zero and full intensity in our data (See left histogram in fig-
ure 10). Especially in the background, as Smith detectors
are calibrated such that the peak of the background noise
is set to the cut-off intensity. This leads to artefacts. For

4

Smith data we get much higher validation loss (figure 9)
and a blurry prediction as shown in Figure 11. There are
also artifacts, e.g. the white aura around the cable in the
bottom center of the image.

Figure 9: Validation Loss of N2S Training with noise com-
pletion(pink) and with original image statistics(green)

Therefore we implement a Noise Completion where we
assign pixel in direct vicinity (5 intensity values) of a cut-
off a different intensity according to a random distribution
(right histogram of figure 10. This random distribution is
domain specific and was chosen empirically from the his-
togram.

Figure 10: Histogram of all pixel intensities of the SHARP
dataset, before and after Noise completion.

(a) Complemented Image Statistics (b) Original Statistics

Figure 11: Output after training with different image statis-
tics. N2S requires complete image statistics. Note the white
aura around the cable in the center.

3.4. Joint Demosaicing and Denoising

This method is for combined training of both demosaic-
ing and denoising. We train it on PRO data by using the
simulated SHARP data as input and PRO images as targets.
We combine methods and architectures from Demosaicing
and Denoising (fig. 17). The model architecture is the N2S
UNet with bilinear upsampling and without any residuals.
While residuals work well for demosaicing, they are not ap-
plicable to N2S (see 3.3).

Joint Masking The images are masked before transfor-
mation into simulated SHARP. The masking grid size is 6
by 6. We define two masking options:

Two Channel Masking: In both channels the same pixel
is masked as in One Channel Denoising. Loss is
computed from both channels. This is based on
the assumption that the two channels are not noise-
independent.

One Channel Masking: If we assume the channels are
noise-independent, we can only mask one channel at
a time. One channel is selected at uniform random
chance and then masked as in One Channel Densois-
ing. Loss is then only computed from this channel.

In appendix in figure 22 we compare two channel and
one channel masking options for joint training. Based on
these results two channel masking is used for joint training.

4. Results
4.1. Demosaicing Architectures

First we compare residual with non-residual learning.
Residually learned models converge much faster during
training (fig. 20). What stands out is that the N2S UNet
learns much better than all other non-residual models be-
cause its highest level skip connection has the least convo-
lutions before and after it. Therefore it is easier for this
network to learn the identity.

In contrast it is difficult for the UNet(transpose/bilinear)
to learn the identity what leads to much better generalization
in the reconstruction of the image. The outputs of the UNets
have cleaner edges and look sharper but the colorization is
not that accurate. In Section we explain why colorization
artifacts occur. Our UNets also denoise the images simulta-
neously.

The outputs of the residually trained models have very
accurate colorization but are more pixelated. Also there are
edge artefacts in the colorization as the model fails to fully
alleviate the overlap of the wider sharp pixels.

There is a trade off between models that can learn the
identity easier and therefore produce outputs robust for col-
orization closer to the input and models that demosaic with

5

UNet bilinear
UNet upconvolution

ResNet
N2S UNet

residual UNet bilinear
residual UNet upconvolution

residual ResNet
residual N2S UNet

Figure 12: We can see that models that are trained on the
residual learn much faster and more stable. The N2S UNet
(light blue) marks an exception as it learns better than all
other non-residual models while also reaching a comparable
final loss value. Validation losses are comparable as seen in
figure 24

Model PSNR SSIM Size
Residual ResNet 128.51 0.9...9941 3.6MB
Bottleneck ResNet 128.08 0.9...9928 2.9MB
N2S UNet 127.47 0.9...9952 53MB
Transpose UNet 127.47 0.9...9889 70MB
ResNet 126.29 0.9...9748 3.6MB
Bicubic 123.70 0.9...9726
Bilinear 123.37 0.9...9721

Table 2: ... stands for seven 9999999 characters

higher quality but less robust regarding the colorization al-
gorithm.

As described in section 3.3 residual learning cannot be
used for denoising. Therefore the N2S UNet is the best
trade off for us. As it is able to learn the demosaicing task
effectively while not learning the identity during denoising.
Of all non residually trained models the N2S UNet has the
best performance (fig. 20).

Colorization Problem Optimizing the prediction on the
two channel image does not imply a good RGB image out-
put (fig. 13). Very small not directly visible errors can have
a large impact on the colorization. The RGB color is influ-
enced by the ratio of the high and low channel. Therefore,
very small changes in the output can already throw these
ratios off. This problem is not that noticeable for residual
models (see fig. 20), as its output is by nature closer to the
input and therefore in the correct value range.

4.2. Demosaicing Evaluation

We compare all models listed in table 1, demosaicing
with bicubic interpolation and an algorithm developed by
Smith. We use peak signal to noise ration (PSNR) and struc-
tural similarity index metric (SSIM) between the PRO im-

Figure 13: Top: high energy channel, middle: low energy
channel, bottom: RGB conversion. Even though the outputs
of both UNets look like a very good demosaicing result the
RGB predictions differ significantly. There are many arte-
facts in the RGB conversion of the UNet output. The rea-
son for this is the way the colors are calculated from the
two-channel image.

age and the reconstructed PRO image from the simulated
SHARP (table 2).

Figure 14 compares colorized outputs of all evaluated
methods. Our residual ResNet has the output that is closest
to the PRO image of the same patch. While this is expected
regarding out training methods this might not be the best
achievable output overall. Smiths output looks more ap-
pealing overall as the colors are smooth and objects on in
the image are easy to recognize. While out methods try to
reconstruct a potentially lost image from the mosaiced their
algorithm also performs enhancements designed with the
use case in mind. Bicubic upsampling produces a surpris-
ingly good result except that it has edge artefacts. Because
we upsample each channel individually and the SHARPs
sensor array is interleaved bicubic interpolation cannot en-
tangle them.

While both ResNets make the top of the PSNR rating
their visiual output is not as appealing. Looking closely
at the wires going through the image we can see that their
edges are pixelated in comparison to the UNets output. UN-
ets main advantage is the ability to generalize SHAPE and
correctly reconstruct them. Noise is mostly removed and
edges are clean and nicely interpolated without pixelation.
SSIM is not very assertive in our case, as the two channel
outputs of our models are near perfect reconstructions of the

6

PRO images. The differences observed in the colorized im-
ages is not reflected in the SSIM. However, the rankind of
models with SSIM correlates with the model performance.

SHARP PRO

SMITHs algorithm

N2S UNet

Bilinear UNet

Bilinear interpolation

Bottleneck ResNet

Residual ResNet

Figure 14: Evaluation of demosaicing algoithms on SHARP
data. The image of the PRO detector of the same patch
was attached for reference. Smith algorithm has a higher
resolution because it also super-resolutes the image. We
notice checkerboard pattern artifacts in the output of Smiths
algorithm. As expected the residual ResNet has the output
that is closest to the PRO regarding colorization while being
sharper at the same time.

4.3. Denoising

In figure 15 we show results from SHARP denoising, one
channel denoising and compare these to BM3D.

One Channel Denoising One channel denoising works
well, but we find that BM3D is able to keep more fine
pixel-scale structures. That is expected, as N2S assumes
the signal to be pixel-wise dependent and predictable. For
very small structures this is not the case. Meanwhile BM3D
has the information of the current pixel available. Note that
BM3D also needs the variance of the noise as input, while
N2S does not have this information.

SHARP Denoising SHARP denoising does not work as
well as one channel denoising. It struggles with apparently
not completely independent pixel in 1 and 2 pixel masking,

 2 channel - 1

 2 channel - 2

 2 channel - 3BM3D

1 channel

Input

Figure 15: Denoising Results: Input, Single Channel De-
noising, BM3D and SHARP denoising with 1,2 and 3 pixel
masking. One channel denoising performes better than
SHARP denoising. BM3D retains structures that are not
possible for N2S to predict.

7

which lead to small artifacts. Considering the completely
masked 3 pixel masking we find it to have similar results to
one channel denoising, but more blurry output. This can be
explained by the greater blind spot of 3 pixel masking.

4.4. Joint Demosaicing and Denoising

input

denoising only

joint demosaicing and denoising

stacked denoising demosaicing

demosaicing only

Figure 16: Joint training evaluated on SHARP data. From
top to bottom: input, only denoising, joint, stacked, demo-
saicing. While denoising works well considering the high
and low images, we see that the RGB images still have the
channel shift, which is to be expected, and therefore give
colourful edges. The joint model performes better than the
stacked model.

We compare the joint model visually to denoising and
demosaicing respectively standalone and stacked (Figure
16). We find that the joint model performes better than
stacking models. This is due to drawbacks in interleaved
channel masking, which the joint model does not have as
the masking is done on perfectly overlapping pixel. Com-

pared to just denoising joint has the colors on edges correct
after color conversion, because it can solve the shift in chan-
nels. Just demosaicing on the other hand has the noise still
visible compared to joint training.

4.5. Inference Runtimes

We compare inference runtimes between our models and
to the denoising reference BM3D. The joint model has the
same runtime as denoising because they use the same archi-
tecture. BM3D is slower than our denoising.

Method Inference Runtime [s]
BM3D (single channel) 0.49
N2S single channel denoising 0.21
N2S two channel denoising 0.21
Res-Resnet demosaicing 0.49
N2S Joint 0.21
Stack (N2S, Res-Resnet) 0.70

Table 3: Inference runtimes of our methods and BM3D ref-
erence.

5. Conclusion

Not all demosaicing methods work equally well on X-
Ray images. While all give good visual results on the sin-
gle channel views, they perform differently when compar-
ing the RGB conversions. Networks with fully residual ar-
chitecture have the best performance regarding colorization.
We present a ResNet architecture that performs slightly bet-
ter than the baseline Bottleneck ResNet. Not fully residual
models such as out UNet give the best structural reconstruc-
tion of the image while they are not accurate enough for
correct colorization. We think the best result regarding col-
orization could be achieved by training non residual UNet
that directly predicts a RGB image. We did not test out but
assume that directly predicting a demosaiced 3 color RGB
image from the two channel input has to potential yield bet-
ter results and also does not require residual learning.

We introduced methods to apply Noise2Self to X-Ray
images with interleaved channels and evaluated them on
real world data. For interleaved two channel denoising we
defined three masking options, based on different assump-
tions. We found learning the residual is a significant local
minima for N2S. Furthermore, we showed that meeting as-
sumptions on image statistics, namely that noise should be
pixel-wise independent and zero-mean and the signal pixel-
wise dependent are important to achieve good perfomance
in N2S. As the image statistics do not meet these require-
ments, we introduced Noise Completion.

Joining tasks improves performance in terms of accuracy
as well as inference runtime.

8

References
[1] J. Batson and L. Royer. Noise2self: Blind denoising by self-

supervision. arXiv preprint arXiv:1901.11365, 2019.
[2] A. Krull, T.-O. Buchholz, and F. Jug. Noise2void-learning

denoising from single noisy images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2129–2137, 2019.

[3] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras,
M. Aittala, and T. Aila. Noise2noise: Learning image restora-
tion without clean data. arXiv preprint arXiv:1803.04189,
2018.

[4] N.-S. Syu, Y.-S. Chen, and Y.-Y. Chuang. Learning deep
convolutional networks for demosaicing. arXiv preprint
arXiv:1802.03769, 2018.

[5] R. Tan, K. Zhang, W. Zuo, and L. Zhang. Color image demo-
saicking via deep residual learning. In Proc. IEEE Int. Conf.
Multimedia Expo (ICME), pages 793–798, 2017.

[6] D. Verma, M. Kumar, and S. Eregala. Deep demosaicing using
resnet-bottleneck architecture. In International Conference
on Computer Vision and Image Processing, pages 170–179.
Springer, 2019.

[7] M. Weigert, U. Schmidt, T. Boothe, A. Müller, A. Dibrov,
A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, et al.
Content-aware image restoration: pushing the limits of flu-
orescence microscopy. Nature methods, 15(12):1090–1097,
2018.

[8] R. Zhou, R. Achanta, and S. Süsstrunk. Deep residual net-
work for joint demosaicing and super-resolution. ArXiv,
abs/1802.06573, 2018.

9

A. Appendix
We append pipeline, model architectures in detail and further visual model evaluations.

PRO

SHARP

Simulate
SHARP train MSE

target
demosaicing

model evaluate

Mask N2S train MSE
masked

target

denoising
model

PRO
Simulate
SHARP

train MSE
masked joint modelMask N2S

target

Figure 17: Schematic describing how we use our datasets for training and evaluation.

10

2 channel output

Conv 128 x 2
kernel 1

128 channel feature tensor

ResBlock 64 x 64 x 64

128 channel feature tensor

ResBlock 64 x 64 x 64

128 channel feature tensor

ResBlock 64 x 64 x 64
128 channel feature tensor

ResBlock 64 x 64 x 64

ResBlock 64 x 64 x 64

128 channel feature tensor

ConvBlock
kernel k

=

Conv(kernel=k)
Batchnorm
LeakyReLU

Conv 2 x 128
kernel 1

2 channel input

ResNet

=

ConvBlock 128 x 64

+

ConvBlock 64 x 64
ConvBlock 64 x 64

ConvBlock 64 x 128

ResNet
Bottleneck

2 channel input

ResBlock 64 x 64

Conv 2 x 256
kernel 3

256 channel feature tensor

ResBlock 64 x 64

=

256 x 64, kernel 1

+

64 x 64, kernel 3
64 x 256, kernel 1

ResBlock 64 x 64
256 channel feature tensor

256 channel feature tensor

10 times

2 channel output

Conv 256 x 2
kernel 3

UNet

2 channel input
Conv 2 x 128

Conv 128 x 128
128 channel

Conv 128 x 256
Conv 256 x 256

MaxPool

256 channel

Conv 256 x 512
Conv 512 x 512

MaxPool

512
Bilinear/TransposeConv

Conv 512 x 512
Conv 512 x 512
Conv 512 x 512

512
Conv 768 x 256
Conv 256 x 256

Bilinear/TransposeConv
Conv 256 x 256
Conv 256 x 256
Conv 256 x 256

256

256

Conv 384 x 128
Conv 128 x 128

Conv 128 x 2
kernel 1

128 channel

2 channel output

N2S UNet
2 channel input

Conv 2 x 64

DownConv
64 channel

Conv 64 x 128

128 channel
DownConv

256
DownConv

Conv 256 x 512
Conv 512 x 512

512

Conv 1024 x 256
Conv 256 x 256

Conv 64 x 64

Conv 128 x 128

Conv 128 x 256
Conv 256 x 256

Conv 512 x 512
Conv 512 x 512

DownConv

Bilinear/TransposeConv
1024

Bilinear/TransposeConv
256

Conv 512 x 128
Conv 128 x 128

Bilinear/TransposeConv
128 channel

Conv 256 x 64
Conv 64 x 64

Bilinear/TransposeConv
64 channel
Conv 64x2

Conv 64x64
two channel output

Figure 18: Different kinds of architectures that we trained on both tasks, denoising and demosaicing. White boxes are
intermediate feature tensors. Yellow boxes are convolutions, blue boxes are multiple convolutions that have a skip connection
over them. We call these residual blocks. Green boxes are up or downsampling layers. A skip connection pointing into a
white box means concatenation. The number in the white box is the number of channels before concatenating. Not the three
convolutional blocks between each upsampling and concatenation in the UNet. We explain these in fig. 23

.

11

 (a) Input (b) Bilinear Upscaling (c) Transpose Conv. Upscaling (d) Fully Residual UNet (e) Original Image Statistics

Figure 19: One Channel Denoising applied to the high channel of SHARP. (b) and (c) show the differences in bilinear versus
transpose convolution as upscaling stages. (d) A fully residual UNet learns the identity function as a local minimum. (e)
Without noise complementation N2S gives us a blurry output.

Figure 20: We compare fully residual models (top) against not fully residual models (bottom). The first column, separated
by a black line shows the raw SHARP and PRO patches of the respective areas. It is directly visible, that the colors for
fully residual are much closer to the ones in the PRO image. One can also observe, that residual models produce pixelated
outputs. Due to its additive nature it is more difficult to smooth out the edges in the input. Non residual models generalize
and reconstruct the shapes well such that edges are smooth and clean. This is an inherent effect of the models compressing
nature.

12

Figure 21: Two Channel Denoising of SHARP data (high channel). From top to bottom: Input, 1,2 and 3 pixel masking.

13

Figure 22: High channel from joint training. From top to bottom: Artificial SHARP input, one channel masking output, two
channel masking output and ground truth. One channel masking is more blurry, while two channel masking shows more
detail (for example at the zipper or at electronics parts).

14

bilinear transpose convolution

3

2

1

0

3

2

1

0

Figure 23: We use our UNet with bilinear interpolations and transpose convolutions and insert 0, 1, 2 and 3 additional
convolutions between upsampling and concatenating to the skip connection. The bilinear UNets output slightly sharpens
by adding one more convolution. But then does not improve anymore. The checkerboard artefacts from the transpose
convolution operation are gradually removed by introducing more convolutions. That is why we parameterize all our UNets
with 3 additional convolutions as visualized in fig. 18.

15

Figure 24: Validation loss of different models during training.

16

